

8			4		6			7
						4		
	1					6	5	
5		9		3		7	8	
				7				
	4	8		2		1		3
	5	2				Г	9	
		1						
3		1	9		2			5

	T O P
PASS	
	STOP or SPOT?

			2	
Р	Α	s	s	
		T	T	
		0	0	
		P	Р	

Both tasks are independently **PSPACE-hard**.

Results: • Find one set: • For k unbounded: - $n = 2 \rightarrow P$ (find a star or a matching) - $n \ge 2 \rightarrow \text{NP-Complete}$ (*Chaudhuri et al.*) • For *n* unbounded: $-k = 2 \rightarrow \text{trivial}$ - k parameter \rightarrow W-hard • Find max number of disjoint sets: • For k=3 the problem is NP-hard.

Attributes = Dimensions Cards = Hyper-edges # of Values = size of Parts