## Past Seminars | |||

Date | July 24, 2017 (Monday) | ||

Time | 16:00－17:00 | ||

Speaker | Shiho Sugimoto | ||

Profile | |||

Title | Computing Abelian string regularities based on RLE | ||

Abstract | Two strings x and y are said to be Abelian equivalent if x is a permutation of y, or vice versa. If a string z satisfies z = xy with x and y being Abelian equivalent, then z is said to be an Abelian square. If a string w can be factorized into a sequence v1,...,vs of strings such that v1 , . . . , vs−1 are all Abelian equivalent and vs is a substring of a permutation of v1, then w is said to have a regular Abelian period (p,t) where p = |v1| and t = |vs|. If a substring w1[i..i+l−1] of a string w1 and a substring w2[j..j + l − 1] of another string w2 are Abelian equivalent, then the substrings are said to be a common Abelian factor of w1 and w2 and if the length l is the maximum of such then the substrings are said to be a longest common Abelian factor of w1 and w2. We propose efficient algorithms which compute these Abelian regularities using the run length encoding (RLE) of strings. For a given string w of length n whose RLE is of size m, we propose algorithms which compute all Abelian squares occurring in w in O(mn) time, and all regular Abelian periods of w in O(mn) time. For two given strings w1 and w2 of total length n and of total RLE size m, we propose an algorithm which computes all longest common Abelian factors in O(m2n) time. | ||

Site | |||